Source code for parmed.geometry

"""
This module contains the functionality for carrying out geometrical calculations
for molecules and molecular systems

Author: Jason Swails
Contributors:

Copyright (C) 2014 - 2015  Jason Swails

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA.
"""
from __future__ import division

from collections import defaultdict
from parmed import unit as u
from parmed.constants import TINY, DEG_TO_RAD, RAD_TO_DEG
from parmed.vec3 import Vec3
from math import pi, cos, sin, sqrt, acos
import numpy as np
import warnings

[docs]def box_lengths_and_angles_to_vectors(a, b, c, alpha, beta, gamma): """ This function takes the lengths of the unit cell vectors and the angles between them and returns 3 unit cell vectors satisfying those dimensions Parameters ---------- a : double (or length Quantity) Length of the first unit cell vector b : double (or length Quantity) Length of the second unit cell vector c : double (or length Quantity) Length of the third unit cell vector alpha : double (or angle Quantity) Angle between vectors b and c beta : double (or angle Quantity) Angle between vectors a and c gamma : double (or angle Quantity) Angle between vectors a and b Returns ------- list Quantity, list Quantity, list Quantity The 3, 3-element vectors as quantities with dimension length Notes ----- The unit cell lengths are assumed to be Angstroms if no explicit unit is given. The angles are assumed to be degrees """ if u.is_quantity(a): a = a.value_in_unit(u.angstroms) if u.is_quantity(b): b = b.value_in_unit(u.angstroms) if u.is_quantity(c): c = c.value_in_unit(u.angstroms) if u.is_quantity(alpha): alpha = alpha.value_in_unit(u.degrees) if u.is_quantity(beta): beta = beta.value_in_unit(u.degrees) if u.is_quantity(gamma): gamma = gamma.value_in_unit(u.degrees) if alpha <= 2*pi and beta <= 2*pi and gamma <= 2*pi: warnings.warn('Strange unit cell vector angles detected. They ' 'appear to be in radians...') alpha *= DEG_TO_RAD beta *= DEG_TO_RAD gamma *= DEG_TO_RAD av = [a, 0.0, 0.0] bx = b * cos(gamma) by = b * sin(gamma) bv = [bx, by, 0.0] cx = c * cos(beta) cy = c * (cos(alpha) - cos(beta)*cos(gamma)) / sin(gamma) cz = sqrt(c*c - cx*cx - cy*cy) cv = [cx, cy, cz] # Make sure that any tiny components are exactly 0 if abs(bx) < TINY: bv[0] = 0 if abs(by) < TINY: bv[1] = 0 if abs(cx) < TINY: cv[0] = 0 if abs(cy) < TINY: cv[1] = 0 if abs(cz) < TINY: cv[2] = 0 return (av, bv, cv) * u.angstroms
[docs]def box_vectors_to_lengths_and_angles(a, b, c): """ This function takes the lengths of the unit cell vectors and the angles between them and returns 3 unit cell vectors satisfying those dimensions Parameters ---------- a : collection of 3 floats (or length Quantity) The first unit cell vector b : collection of 3 floats (or length Quantity) The second unit cell vector c : collection of 3 floats (or length Quantity) The third unit cell vector Returns ------- (a, b, c), (alpha, beta, gamma) Two tuples, the first is the 3 unit cell vector lengths as length-dimension Quantity objects and the second is the set of angles between the unit cell vectors as angle-dimension Quantity objects Notes ----- The unit cell lengths are assumed to be Angstroms if no explicit unit is given. """ if u.is_quantity(a): a = a.value_in_unit(u.angstroms) if u.is_quantity(b): b = b.value_in_unit(u.angstroms) if u.is_quantity(c): c = c.value_in_unit(u.angstroms) # Get the lengths la = sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]) lb = sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]) lc = sqrt(c[0]*c[0] + c[1]*c[1] + c[2]*c[2]) # Angles alpha = acos((b[0]*c[0] + b[1]*c[1] + b[2]*c[2]) / (lb*lc)) beta = acos((a[0]*c[0] + a[1]*c[1] + a[2]*c[2]) / (la*lc)) gamma = acos((b[0]*a[0] + b[1]*a[1] + b[2]*a[2]) / (lb*la)) # Convert to degrees alpha *= RAD_TO_DEG beta *= RAD_TO_DEG gamma *= RAD_TO_DEG return (la, lb, lc) * u.angstroms, (alpha, beta, gamma) * u.degrees
[docs]def reduce_box_vectors(a, b, c): """ This function puts three unit cell vectors in a reduced form where a is "mostly" in x, b is "mostly" in y, and c is "mostly" in z. This form is necessary for some programs (notably OpenMM and Gromacs) Parameters ---------- a : 3-element collection of float First unit cell vector b : 3-element collection of float Second unit cell vector c : 3-element collection of float Third unit cell vector Returns ------- red_a, red_b, red_c : Vec3, Vec3, Vec3 The reduced unit cell vectors in units of angstroms Notes ----- The implementation here is taken from the OpenMM Python application layer written by Peter Eastman """ if u.is_quantity(a): a = a.value_in_unit(u.angstroms) if u.is_quantity(b): b = b.value_in_unit(u.angstroms) if u.is_quantity(c): c = c.value_in_unit(u.angstroms) a = Vec3(*a) b = Vec3(*b) c = Vec3(*c) c = c - b*round(c[1]/b[1]) c = c - a*round(c[0]/a[0]) b = b - a*round(b[0]/a[0]) return a, b, c
[docs]def center_of_mass(coordinates, masses): """ Compute the center of mass of a group of coordinates. Parameters ---------- coordinates : numpy.ndarray Coordinate array masses : numpy.ndarray Array of masses Returns ------- COM np.ndarray of shape (3,) identifying the cartesian center of mass Notes ----- This method *requires* that the parameters be passed in as numpy arrays. AttributeError's will ensue if this is not the case. Also, coordinates must be able to be reshaped to (len(masses), 3), or ValueError's will ensue """ masses = masses.flatten() coordinates = coordinates.reshape((masses.shape[0], 3)) return np.average(coordinates, weights=masses, axis=0)
[docs]def distance2(a1, a2): """ Computes the cartesian distance between two atoms. Ignores periodic boundary conditions. Parameters ---------- a1, a2 : Atom or collection of 3 coordinates The two atoms between whom the distance should be calculated Returns ------- d2 : float The square of the distance between the two atoms Notes ----- This is done in pure Python, so it should not be used for large numbers of distance calculations. For that, use numpy-vectorized routines and the numpy coordinate arrays Raises ------ TypeError if a1 or a2 are not Atom or iterable ValueError if a1 or a2 are iterable, but do not have exactly 3 items """ x1, y1, z1 = _get_coords_from_atom_or_tuple(a1) x2, y2, z2 = _get_coords_from_atom_or_tuple(a2) dx = x1 - x2 dy = y1 - y2 dz = z1 - z2 return dx*dx + dy*dy + dz*dz
[docs]def angle(a1, a2, a3): """ Computes the cartesian angle between three atoms. Ignores periodic boundary conditions. Parameters ---------- a1, a2, a3 : Atom or collection of 3 coordinates The three atoms between whom the angle should be calculated (with a2 being the central atoms) Returns ------- ang : float The angle between the vectors a1-a2 and a2-a3 in degrees Notes ----- This is done in pure Python, so it should not be used for large numbers of distance calculations. For that, use numpy-vectorized routines and the numpy coordinate arrays Raises ------ TypeError if a1, a2, or a3 are not Atom or iterable ValueError if a1, a2, or a3 are iterable, but do not have exactly 3 items """ x1, y1, z1 = _get_coords_from_atom_or_tuple(a1) x2, y2, z2 = _get_coords_from_atom_or_tuple(a2) x3, y3, z3 = _get_coords_from_atom_or_tuple(a3) v1 = np.array([x2 - x1, y2 - y1, z2 - z1]) v2 = np.array([x2 - x3, y2 - y3, z2 - z3]) l1 = np.sqrt(np.dot(v1, v1)) l2 = np.sqrt(np.dot(v2, v2)) cosa = np.dot(v1, v2) / (l1 * l2) return np.degrees(np.arccos(cosa))
[docs]def dihedral(a1, a2, a3, a4): """ Computes the angle between three vectors made up of four points (all three vectors share one point with one other vector) Parameters ---------- a1, a2, a3, a4 : Atom or collection of 4 coordinates The four atoms between whom the torsion angle should be calculated (with a1 and a4 being the two end-point atoms not shared between two vectors) Returns ------- dihed : float The measured dihedral between the 4 points in degrees """ p = np.array([_get_coords_from_atom_or_tuple(a1), _get_coords_from_atom_or_tuple(a2), _get_coords_from_atom_or_tuple(a3), _get_coords_from_atom_or_tuple(a4)]) v1 = p[1] - p[0] v2 = p[1] - p[2] v3 = p[3] - p[2] # Take the cross product between v1-v2 and v2-v3 v1xv2 = _cross(v1, v2) v2xv3 = _cross(v2, v3) # Now find the angle between these cross-products l1 = np.sqrt(np.dot(v1xv2, v1xv2)) l2 = np.sqrt(np.dot(v2xv3, v2xv3)) cosa = np.dot(v1xv2, v2xv3) / (l1 * l2) if np.dot(v3, v1xv2) <= 0.0 : return np.degrees(np.arccos(cosa)) else : return -np.degrees(np.arccos(cosa))
def _cross(v1, v2): """ Computes the cross-product """ # Can't use np.cross for pypy, since it's not yet implemented return np.array([v1[1]*v2[2] - v1[2]*v2[1], v1[2]*v2[0] - v1[0]*v2[2], v1[0]*v2[1] - v1[1]*v2[0]]) def _get_coords_from_atom_or_tuple(a): from parmed.topologyobjects import Atom if isinstance(a, Atom): return a.xx, a.xy, a.xz return a # tuples are pairs of atomic numbers followed by the distance cutoff below which # they are considered "bonded". This is taken from Atom.cpp in cpptraj # (Atom::GetBondLength) _OFFSET = 0.20 # offset for what is considered a bond _DEFAULT_CUTOFF = (1.6 + _OFFSET)**2 STANDARD_BOND_LENGTHS_SQUARED = defaultdict(lambda: _DEFAULT_CUTOFF) STANDARD_BOND_LENGTHS_SQUARED.update({ # Self-bonds (1, 1) : (0.74 + _OFFSET)**2, (6, 6) : (1.54 + _OFFSET)**2, (7, 7) : (1.45 + _OFFSET)**2, (8, 8) : (1.48 + _OFFSET)**2, (15, 15) : (2.21 + _OFFSET)**2, (16, 16) : (2.05 + _OFFSET)**2, # H- (1, 6) : (1.09 + _OFFSET)**2, (6, 1) : (1.09 + _OFFSET)**2, (1, 7) : (1.01 + _OFFSET)**2, (7, 1) : (1.01 + _OFFSET)**2, (1, 8) : (0.96 + _OFFSET)**2, (8, 1) : (0.96 + _OFFSET)**2, (1, 15) : (1.44 + _OFFSET)**2, (15, 1) : (1.44 + _OFFSET)**2, (1, 16) : (1.34 + _OFFSET)**2, (16, 1) : (1.34 + _OFFSET)**2, # C- (6, 7) : (1.47 + _OFFSET)**2, (7, 6) : (1.47 + _OFFSET)**2, (6, 8) : (1.43 + _OFFSET)**2, (8, 6) : (1.43 + _OFFSET)**2, (6, 9) : (1.35 + _OFFSET)**2, (9, 6) : (1.35 + _OFFSET)**2, (6, 15) : (1.84 + _OFFSET)**2, (15, 6) : (1.84 + _OFFSET)**2, (6, 16) : (1.82 + _OFFSET)**2, (16, 6) : (1.82 + _OFFSET)**2, (6, 17) : (1.77 + _OFFSET)**2, (17, 6) : (1.77 + _OFFSET)**2, (6, 35) : (1.94 + _OFFSET)**2, (35, 6) : (1.94 + _OFFSET)**2, # N- (7, 8) : (1.40 + _OFFSET)**2, (8, 7) : (1.40 + _OFFSET)**2, (7, 9) : (1.36 + _OFFSET)**2, (9, 7) : (1.36 + _OFFSET)**2, (7, 15) : (1.71 + _OFFSET)**2, (15, 7) : (1.71 + _OFFSET)**2, (7, 16) : (1.68 + _OFFSET)**2, (16, 7) : (1.68 + _OFFSET)**2, (7, 17) : (1.75 + _OFFSET)**2, (17, 7) : (1.75 + _OFFSET)**2, # O- (8, 9) : (1.42 + _OFFSET)**2, (9, 8) : (1.42 + _OFFSET)**2, (8, 15) : (1.63 + _OFFSET)**2, (15, 8) : (1.63 + _OFFSET)**2, (8, 16) : (1.48 + _OFFSET)**2, (16, 8) : (1.48 + _OFFSET)**2, # F- (9, 15) : (1.54 + _OFFSET)**2, (15, 9) : (1.54 + _OFFSET)**2, (9, 16) : (1.56 + _OFFSET)**2, (16, 9) : (1.56 + _OFFSET)**2, # P- (15, 16) : (1.86 + _OFFSET)**2, (16, 15) : (1.86 + _OFFSET)**2, (15, 17) : (2.03 + _OFFSET)**2, (17, 15) : (2.03 + _OFFSET)**2, # S- (16, 17) : (2.07 + _OFFSET)**2, (17, 16) : (2.07 + _OFFSET)**2, })